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Abstract

The existence or non-existence of the bending coefficient in liquid interfaces

as well as applicability of the Helfrich free energy, is examined by comparing

correlations in the interfaces with or without a weak surfactant. In the latter case,

the formation of a bilayer is studied and density-density correlations and height-

height correlations are reported, analyzed, and compared with ”normal” liquid

interfaces. In particular the role of lateral tension is discussed.
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I. Introduction.

In our previous work we have investigated the structure of interfaces between

two immiscible liquids and between a liquid and its vapor[1,2,3]. We used the

computer simulation and the method of Molecular Dynamics; the liquids were

formed by spherical particles interacting with Lennard-Jones potentials, and only

single planar interfaces were studied. It is worthwhile to realize that this was but

one particular case and that liquids, in particular multicomponent mixtures, can

form a great variety of most exotic phases. One such large group of systems are

those containing a surfactant as one component. A very brief review[4] summarizes

the basic theoretical understanding of these systems. The references by Nelson et

al.[5] and the work of Dietrich and Napiorkowski[6] can additionally be consulted.

In particular, two immiscible liquids on addition of surfactant, can form mi-

croemulsions and lamellar phases. These phases, formed often in a narrow range of

state parameters (such as temperature T, pressure p, and concentrations x1, x2, ...

) have many interfaces in their bulk, held in place by their mutual repulsion among

other factors, and are successfully described by assuming their surface tensions to

be vanishing or almost vanishing. Their fluctuations are therefore ruled not by

the ordinary capillary waves and the underlying surface (interfacial) tension, but

by the rigidity (bending) coefficient and changes in curvature.

Similarly liquid membranes and bilayers are described by a particular set of

concepts such as: area per head-group, spontaneous curvature, bending(rigidity)

coefficient and Gaussian curvature. To describe these objects, of great common

interest to physicists and biologists, a number of phenomenological theories has

been proposed, many of them based on the Hamiltonian associated with the names

of Carnam and Helfrich[7].

An immediate question arises: if these membranes, bilayers, and interfaces

in lamellar phases, ..., are ruled by their curvatures and associated elasticity co-

efficients, what about the normal interfaces? Surely they are capable of bending
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and of having non-zero curvature; one therefore legitimately asks for the presence

or absence of the same effects in ordinary interfaces. And a related question is :

what is a ”normal” interface and what is a membrane - what is it that makes an

interface ”normal” and what makes it to be a membrane.

In order to understand better the transition from normal interfaces with non-

zero surface tension to those with a vanishing surface tension we have studied

immiscible liquids with a third component which is a weak surfactant. Here we

report results of MD simulations for an easier and simpler system, a binary system

solvent+surfactant in which the surfactant molecules form a single bilayer. Our

results include the correlations as given by the structure factor.

In Section 2 we give a simple theoretical introduction, in Section 3 we describe

the model and the simulations; then we show and discuss the interfacial structure

factors. In Section 4 we discuss the conclusions.

II. Background: free energy, surface tension, and correlations.

The product γA of the surface (interfacial) tension γ and the area A is the

contribution of the interface to the total free energy F of the system; thus F =

Fb+γA and since γ is positive, lowering of the free energy can normally be achieved

by making A as small as possible. Hence the plot of F vs A looks like the straight

line labelled (A) in Fig.1. A membrane or a bilayer has an optimal surface area

per surfactant head; if A > Nah the object is stretched, if A < Nah it is laterally

compressed and therefore the hypothetical dependence of F on A looks like the

curve marked (B) in Fig.1. Once we have admitted such possibilities, various other

shapes of F (A) can be invented[5,8]. Still another F (A) dependence is suggested in

Section III. Admitting the existence of a minimum in F (A) we reach the unsettling

conclusion that the surface tension defined as dF/dA can be positive or negative:

A > A0 ≡ Nah γ = dF/dA > 0 (1a)

A = A0 ≡ Nah γ = dF/dA = 0 (1b)
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A < A0 ≡ Nah γ = dF/dA < 0 (1c)

This, however can be understood as follows. Consider a definite setup, like the one

illustrated in Fig.2, where the bilayer fills the periodic simulation box, dividing

the solvent into the upper and lower parts in the Figure. The interfacial tension

can be readily calculated by the Kirkwood-Buff formula[9,10]

γ = p̄zz − p̄xx (2)

where

p̄αα =
∫ Lz

0

dzpαα(z) (α = x, y, z) (3)

If p̄zz > p̄xx then γ > 0 and conversely. Of course pyy(z) = pxx(z) by symmetry.

There is no injuction against p̄zz being smaller than p̄xx. In fact, for a bilayer im-

mersed in a solvent, γ looses its physical meaning developped for normal surfaces.

It is directly related to lateral compressibility K[11] by

KA0 = (dγ(A)/dA)|A=A0 (4)

Such is the quintessential difference between membranes/bilayers and liquid-vapor

or liquid-liquid interfaces. For discussions concerning the role of diffusion (parti-

cle exchange), various ensembles, different types of bilayers, membranes, and/or

vesicles, the specialized literature [4,5,8] can be consulted. Note that when devel-

opping a description of Langmuir monolayers, we also change the physical meaning

(and the name) of the derivative dF/dA.

Either object can and does fluctuate thanks to thermal motion, and the long

wavelength modes are clearly associated with a fluctuation in the surface area A.

For normal interfaces the free energy cost of a fluctuation is γ · dA and γ in the

standard theory does not vary. This leads to the interfacial hamiltonian

H[h] =
1
2

∫
dxdy[γ(∇h)2 + V ′′(0)h2]. (5)
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and to the height-height correlation function (in Fourier-transformed form)

<| hq |2>=
kT

γq2 + γξ−2
(6)

where the parallel correlation length is

ξ2 =
γ

V ′′(0)
(7)

If the capillary-wave, or interfacial, hamiltonian is improved by further terms, so

the denominator in (6) contains more than just γq2. Offhand one expects this

term to be the second term D2 in the power series such as D0 +D2q
2 +D4q

4 + ...

but Dietrich and Napiorkowski[6] have shown that such a power series diverges

and should be replaced by D0 + D2q
2 + D4(q4 log q) + ... It is therefore safer to

write

1/ <| hq |2>= D0 + βγq2 + q4f(q) (8)

with β = 1/kT,D0 = βV ′′(0), D2 = βγ, f(q) unknown. Mecke and Dietrich[12]

defined the combination βγ + q2f(q) as the effective surface tension βγeff (q) and

based their calculation on the density functional theory in which the rotation of

the fluctuating density profile was (for the first time) accounted for. Calcula-

tions become straightforward if using the approach pioneered by Robledo et al.

[13], based on the interfacial hamiltonian derived in a clear way from the exact

second-order free-energy difference due to density fluctuations δρ(r) in terms of

the Inhomogeneous Direct Correlation Function C(1, 2)

δF = (1/2)
∫ ∫

d(1)d(2)C(1, 2)δρ(1)δρ(2) (9)

from which, in one approximation

H[h] =
∑
q

C̄(| q |)hqh−q (10)

and

1/ <| hq |2>= C̄(q) (11)
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The function C̄ of one variable q is a projection of C(z1, z2, q) [13]. We have deter-

mined[3] this function from our simulations[3] and we have shown unequivocally

that (a) there exists the initial region q ∈ [0, q∗] where C(q) = C0 + q2C2 - i.e.

the region of capillary waves (b) that is terminated by a sharp maximum near

q∗ ∼ 1σ after which C(q) falls to reach a broad minimum near q ∼ 2π/σ. If one

wishes to construct a power series C = C0 + C2q
2 + C4q

4 + ... it is clear that C4

must be negative and moreover from the general discussion of Stecki[3] it follows

that it is a general feature of the liquid-vapor interface. We can also make contact

now with the theory of Mecke and Dietrich[13] and with the experimental results

[14] where the concept of the effective interfacial tension in the sense of eq.(8), is

used. From our data of C̄(q) we can construct this quantity by the simple division

by q2: βγeff (q) = (C̄(q) − C̄(0))/q2). Another possible definition could jus as

well be βγeff (q) = (d/d(q2))C̄(q). Figure 3 shows the plot of βγeff (q) and the

characteristic fall with the increase of q; the confirmation of this result by recent

experimental data [14] is very gratifying. These result also mean that all attempts

to interpret C4 as a kind of bending coefficient are doomed because C4 is going

to be always negative in a liquid-vapor interface. In a liquid-liquid interface[1] the

agreement with the standard capilllary-wave theory was excellent but the extrac-

tion of the D4 term was not so unequivocal (though a renewed interpretation of

our data with the aid of the theory of Dietrich and Napiorkowski[6] remains to be

done).

Such was one way of representing and interpreting the scattering factor

S(q) ∼<| hq |2>, i.e. through a representation

1/S = D0 +D2q
2 +D4q4 + ... = D0 +D2q

2 + q4f(q). (12)

Quite another representation has been used[11] for the height-height correlation

function of a simulated bilayer, namely

S(q) ∼ a/q4 + b/q2 (13)
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We do not know of any theoretical justification of this form. For normal inter-

faces statistical mechanics predicts eq.(6) as ”the most divergent term”[9,10]. It

is a broader issue we do not address in this paper. Certainly, as an empirical

formula (13) is very successful and in what follows we have applied both of these

representations to our new data on liquid bilayer formed by a weak surfactant in

a one-component solvent. We generalize (13) in an obvious manner

S(q) ∼ a/q4 + b/q2 +A+Bq2 + ... (14)

Section III. The modelling of interactions and the results.

We use the model of spherical particles interacting with the Lennard-Jones

(6,12) potentials with cutoffs. In order to have the simplest posssible system

without obscure complications we choose equal masses and equal sizes but different

cutoffs in the spirit of WCA theory, used often in other work[15,16] The interaction

potential is

uαβ(rij) = 4ε[((σ/rij)12−(σ/rij)6))−((σ/rc
αβ)

12−(σ/rc
αβ)

6))]×η(rc
αβ−rij) (15)

with species index α = 1, 2 for species ”a” and ”b”, respectively and similarly for

species index β. η(x) is the Heaviside function. The cutoff distance is rc
αβ = 2.5σ

if α = β and rc
αβ = r∗ ≡ 21/6σ if α 
= β. We model the surfactant as a dimer made

of unlike particles which interact with monomers according to the same interaction

potential. The inner bond interaction is u12(r) if r < r∗ and u12(2r∗−r) if r > r∗.

I owe the suggestion of this model to S.Toxvaerd[17]. But it was Smit[18] who first

modelled in a simulation the surfactant as a dimer and has shown it already has

some semblance to reality.

The ”standard” version of our model is the one with equal masses and with

the same ε for all pairs. The solvent is made of ”a”’s, and the bilayer is made of

bound ”a-b” pairs. Therefore the ”a” end of the dimer plays the role of the ”head”

in contact with the solvent (since the a-a pairs are favored energetically) and the
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”b” end of the dimer plays the role of the hydrocarbon part and likes to stay inside

the bilayer, away from the solvent. This is already seen in Fig.2. We have also

investigated a few modifications. First, the heads are often polar as is the solvent

whereas the cohesive energy of hydrocarbon environment is low; thus we can make

the ”a”free - ”a”bound interaction stronger than the rest. This did not enhance

the formation of the bilayer in any visible way but it did result in filling the bilayer

with solvent, to a large extent. We can also make the ”b”-ends heavier to slow

down the motions of the bilayer. Finally, we can add an additional repulsion of

longer range between the ”b”ends and the free ”a”’s so as to presumably chase

any solvent particles out of the inside of the bilayer; the latter interaction can be

a repulsive r−9 potential[11]. In the end, we did not continue with these modified

versions because the essential features of the bilayer were not changed much. We

did some simulations with a long-range repulsive potential [11], because we found

it enhanced the q−4 contribution to the scattering factor S(q) (cf. eq. (13-14)).

We report here simulations with a periodic box with N=40,000 particles and

Nd = 1440 dimers, with box dimensions about 30 × 30 × 50, at temperature

kT/ε = 0.75. The Molecular Dynamics was performed with Verlet leap-frog al-

gorithm and Nose-Hoover thermostat[19]. The preassembled bilayer adapted its

own configuration very quickly but, as we started from a surface area 50 × 50

the surfactant dimers aggregated into domains.These grew in time, though very

slowly. An x, y projection of an early structure with domains are shown in Figure

4. If left to equilibrate, a large connected domain resulted and one or two big holes

filled with solvent. This suggested that there might exist the membrane-like quan-

tity, the area per ”a”-head. Compressing the system in the lateral x, y directions

with a simultaneous expansion in the z-direction changes the surfactant domains

and eventually the x, y cross-sections become homogeneous at an area at which

γ is still positive. This is reminiscent of the two-dimensional domain coexistence,

known very well for monolayers. If so, the F (A) dependence might have a shape

like the double inflexion curve ”(C)” in Fig.1. Further lateral compression brings
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about an increase in p̄xx = p̄yy, and a decrease in p̄zz , hence a decrease in γ and a

change in the x, y morphology. . Further compression diminishes γ and eventually

very low values of γ can be reached. Such states appear to be stable. Compression

to still lower areas produced negative γ but such states were not stable. It was

found possible to maintain a bilayer with γ about -0.01. The bilayer reorganized

itself doubling its thickness in most cases and restoring γ to positive values. Also

it was not clear whether the bilayer with slightly negative γ was not a metastable

state. It would persist for 1.E6 timesteps but this is no proof. The reorganized

bi-to-quad layer was very stable. We have taken the view that the positions of the

centers of mass of the dimers determine the instantaneous surface[5], or rather two

instantaneous surfaces of ”up-dimers” and ”down-dimers”. From these two cor-

relation functions were constructed, the dimer-dimer density-density correlation

function

Hdd =< ρd(r1)ρd(r2) >

or rather its two-dimensional Fourier transform H(q) and the height-height cor-

relation function S(q) ≡< hqh−q >. Each z-coordinate of a dimer is treated as

height [x, y, z] → [x, y, h(x, y)]. For each set of positions at given time, the average

heights are calculated and the actual heights are measured with respect to this

instantaneous average. These two functions do not differ much so we choose S(q),

for the discussion. We wish to discriminate between the two mathematical forms,

(12) and (14). We note that (13) can be rewritten as (a+ bq2)/q4 which implies a

limit of the expression S(q)q4 and therefore we have analyzed the following quan-

tities: S, Sq, Sq2, Sq3, Sq4, and their inverses. Taking the limit q → 0, for damped

(D0 
= 0) and free (D0 = 0) case we calculate the limits of the analytical forms

(12) and (14) and test these detailed predictions on our data. The expressions

(12) and (14) lead to different behaviour of such derived functions, as q → 0.

First, Fig.5 shows a plot of the height-height correlation S(q) for a bilayer with a

small positive γ; due to smallness of the capillary-wave contribution, the plot is

dominated by the approach to the first nearest-neighbor peak seen near q = 2π/σ.
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The capillary-wave divergence is very weak. Out of the analysis outlined above

we show only one plot in Fig.6; if the ”traditional” expression (12) were appropri-

ate, plot of Sq2 vs. q2 ought to be linear with value at zero D2 = βγ and slope

D4 > 0. Clearly this is not the case. Alternatively, expression (13) requires that

Sq4 should reach a constant and for data shown in Fig.5 and Fig.6 this is not the

case. After the analysis we found that data in Fig.5 and 6 are well represented

(for not-too-large q) by (14), though with a=0 i.e. by S ∼ b/q2 + A+Bq2.

V. Discussion

Our results seem to confirm the view expressed above, namely that the

membrane-like approach to interfaces is valid if there exists a series of stable states

with a minimum of free energy at a surface area A0 of a tension-free bilayer. For

our weak surfactant modelled by a dimer, it appears that the compressed states

with A < A0 are not stable, and the expanded states, are stable within a narrow

range of areas. For higher A’s the bilayer breaks into domains. For lower A’s it

reorganizes itself into a quad-layer with a positive γ. Then the expected bending

modes either in (12) (D4 
= 0) or in (13)-(14) (a 
= 0) do not show. It may well

be, in line with the qualitative discussions[20] that a long chain-length or a double

chain-length is needed for a formation of a stable bilayer, i.e. such that would

be stable in an interval of areas including the equilibrium tensionless state, com-

pressed states, and expanded states. Such a bilayer was constructed[11] but it is

now not clear what was the role of the additional special repulsive (r−9) potential

introduced in that work[11], in stabilizing the expanded and compressed states.

Finally, we find it relatively straightforward to determine the density correlation

functions such as those reported here.
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Figure Captions

Figure 1.

Total free energy dependence on A, the area of the interface or of the membrane-

like object. (A) is the normal interface: F = Fb + γA and γ, the slope, is const.

(B) is what is predicted for a membrane-like object for which F (A) hs a minimum

at a specific area-per-head. (C) is the general shape if coexistence of domains is

assumed. Then γ is constant in the two-phase region.

Figure 2.

A typical snapshot configuration of a bilayer; the ”a” ends of dimers are marked

with diamonds, the ”b” ends are marked with crosses, and the free ”a”’s (the

solvent particles) are not marked for clarity. Here kT/ε = 0.75 and there are 1440

dimers; the lengths are in units of Lennard-Jones σ - the collision diameter of the

molecules.

Figure 3.

The ”effective q-dependent surface tension” calculated by dividing by q2 the func-

tion C̄(q) discussed and shown earlier[3]. Its shape as function of q is identical with

that found in a real experiment [14] and calculated from the density-functional the-

ory with rotation of intrinsic profile, except for the limiting region q → ∞ where in

our case the finiteness is ensured by the general properties of the Ornstein-Zernicke

function c for r12− > 0.

Figure 4.

13



Lateral domains of surfactant heads and tails formed when the surface area is too

large and the bilayer would be under stretching tension, were it homogeneous.

Solvent molecules, which fill the holes, are not shown for clarity. All data shown

are for N=40000, T ∗ = 0.75, and the ”standard” model described in Section 3.

Figure 5.

A typical plot of S(q) vs. q for a bilayer (nearly tension-free i.e. with γ near

zero). Note the position of the first peak near q = 2π/σ, and the barely visible

capillary-wave (or bending wave) divergence near q = 0.

Figure 6.

A typical plot of 1/S(q)/q2 vs. q2.
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